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Abstract
The fidelity metric has recently been proposed as a useful and elegant approach
to identify and characterize both quantum and classical phase transitions. We
study this metric on the manifold of thermal states for the Lipkin–Meshkov–
Glick (LMG) model. For the isotropic LMG model, we find that the metric
reduces to a Fisher–Rao metric, reflecting an underlying classical probability
distribution. Furthermore, this metric can be expressed in terms of derivatives
of the free energy, indicating a relation to Ruppeiner geometry. This allows us to
obtain exact expressions for the (suitably rescaled) metric in the thermodynamic
limit. The phase transition of the isotropic LMG model is signalled by a
degeneracy of this (improper) metric in the paramagnetic phase. Due to the
integrability of the isotropic LMG model, ground-state level crossings occur,
leading to an ill-defined fidelity metric at zero temperature.

PACS numbers: 05.70.Fh, 02.40.Ky, 64.70.Tg, 75.10.Jm

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Beginning with the ground-state overlap studies of Zanardi and Paunković [1], the fidelity
of quantum states has recently been used for investigating classical as well as quantum
critical behaviour in various systems. The motivating idea behind this approach is simple,
yet extremely plausible: the properties of different macroscopic phases of matter should be
encoded in the structure of rather distinct quantum states. Hence, a suitable metric that can
quantify how ‘different’ two given quantum states are should be able to capture some signature
of a phase transition (see [2] for a recent review of these and related ideas).
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The appeal of this approach lies in the fact that it is related to geometric structures inherent
to the state space of the given quantum system itself. This was already pointed out in [3] for
the case of pure quantum states, and a generalization of fidelity to finite temperatures was
discussed in [4]. Fidelity itself and the corresponding geometric quantities might thus serve
as ‘universal order parameters’ that reveal signatures of criticality at zero as well as finite
temperatures. A related approach, proposing the use of the so-called fidelity susceptibility in
order to identify and characterize quantum phase transitions, has recently been put forward by
You et al [5].

A further interesting feature of the fidelity-metric approach lies in the fact that it also
applies to non-standard (quantum) phase transitions, such as topologically ordered phases
[6]. For such transitions, no symmetry breaking principles are at work, and no local order
parameter can be defined. For current results on fidelity and fidelity metric approaches to
topological order, see [7, 8].

In the present paper, we study the phase transition of the Lipkin–Meshkov–Glick (LMG)
model within the fidelity-metric approach [9]. Originally, this model was proposed to describe
excitations in simple atomic nuclei. In its spin-1/2 representation, it can be regarded as a
quantum XY model with infinite-ranged ferromagnetic exchange interactions, where every
spin is subject to an external transverse magnetic field h. This model shows a continuous
phase transition from a symmetry-breaking, ferromagnetically ordered phase to a phase that
is spin-polarized for zero temperature and high fields and crosses over continuously to a
paramagnet at zero field and high temperature. We mostly study the isotropic case, being
rotationally symmetric in the (x, y)-plane. This case is somewhat special due to the fact
that the Hamiltonian consists of mutually commuting terms, and no ‘competition’ between
noncommuting terms (regarding e.g. symmetry) can arise. Our aim is then to obtain the
Riemannian metric tensor field related to fidelity, defined on the model’s quantum state space.
As expected, we find in this metric a signature of the phase transition. The peculiarities of
the isotropic LMG model lead to a number of remarkable properties of the metric: first, as
a consequence of exact ground-state level crossings, the metric is not well defined on the
ground-state manifold, i.e. at zero temperature. Second, for finite temperatures, we find a very
pronounced signature at the phase boundary, with a well-defined Riemannian metric for the
ferromagnetic phase, and a degenerate tensor field (not being a proper Riemannian metric) for
the paramagnetic phase. Third, the metric components can be expressed entirely in terms of
derivatives of the free energy, suggesting a close relation to Ruppeiner geometry [10]. These
features should disappear for the anisotropic case, i.e. as soon as a noncommuting term is
added to the Hamiltonian.

Studies of the phase transition of the LMG model within the framework of fidelity, fidelity
susceptibility and related concepts have been reported previously. In [11], fidelity was used
basically as an alternative means to obtain the phase diagram, whereas in [12] the fidelity
susceptibility and its scaling behaviour were studied (see also [13] and [14] for related work).
Yet, to our knowledge, the explicit calculation of the associated metric tensor field at finite
temperatures is novel.

The paper is structured as follows: in sections 2 and 3 we give an overview of the quantum
state space and its underlying geometric structures. This will lead us to the concepts of Fubini–
Study geometry in the case of pure states and Bures geometry for mixed states. In section 4
we introduce the isotropic LMG model, its simple solution in terms of angular momentum
states and its exact thermodynamic solution. Section 5 is devoted to the computation of
the fidelity metric induced on thermal submanifolds and the Ricci scalar. The Fubini–Study
limit is discussed in section 6, and remarks on the anisotropic LMG model can be found in
section 7. A discussion of the results and an outlook on future work is given in section 8.
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2. Fubini–Study geometry on the quantum state space P(H )

In this section we introduce a Riemannian metric on the quantum state space which serves
as a measure of distinguishability of quantum states. As a first step, following [15], we
will introduce the quantum state space as a base manifold of a certain fibre bundle. Then
there exists a very natural (from a mathematical point of view) way to derive a metric on the
quantum state space from the scalar product on the Hilbert space. Remarkably, this metric has
an information-geometric interpretation, rendering it a useful measure of distinguishability of
quantum states.

Consider a quantum system defined on a Hilbert space H . We denote by

S(H ) ≡ {|ψ〉 ∈ H |〈ψ |ψ〉 = 1} ⊂ H (1)

the subset of normalized Hilbert space vectors. Then it is well known that the relevant physical
information is contained in the transition probabilities |〈ψ |ϕ〉|2, where |ψ〉, |ϕ〉 ∈ S(H ).
However, S(H ) contains redundant state vectors, and therefore is not what we would like to
call the quantum state space: for a phase-shifted Hilbert-space vector

|ψ ′〉 ≡ eiθ |ψ〉, (2)

it is obvious that |〈ψ ′|ϕ〉|2 = |〈ψ |ϕ〉|2, and |ψ〉 and |ψ ′〉 cannot be distinguished by
measuring expectation values of any observable acting on H alone. Putting it less mundane,
the invariance of transition probabilities under these U(1) transformations induces an
equivalence relation |ψ〉 ∼ |ψ ′〉 on S(H ). We denote by [ψ] ∈ P(H ) the corresponding
equivalence classes, where the projective Hilbert space P(H ) is the space of equivalence
classes. The projective Hilbert space now defines our first version of a quantum state
space. Note that, for finite-dimensional Hilbert spaces H = C

N , the projective Hilbert
space P(H ) ∼= CP N−1 is a complex projective space, which is well studied in geometry. The
projection mapping

π : S(H ) → P(H ), |ψ〉 
→ [ψ], (3)

allows for a fibre bundle interpretation: S(H )
π→ P(H ) is a principal fibre bundle with the

structure group U(1) and quantum state space P(H ) as its base space. The fibres π−1([ψ])
are one-dimensional subspaces of H and are themselves isomorphic to U(1). Note that
P(H ) is isomorphic to the space of one-dimensional projectors of the form |ψ〉〈ψ |.

The Hilbert space H possesses a geometric structure that originates from its scalar
product in a straightforward way:

〈ψ |ϕ〉 ≡ G(ψ, ϕ) + i�(ψ, ϕ). (4)

Here, G(ψ, ϕ) and �(ψ, ϕ) are defined as the real, respectively imaginary, part of 〈ψ |ϕ〉.
G : H × H → R is a bilinear, non-degenerate and symmetric map. Due to linearity of
the Hilbert space H , we can identify its tangent space TψH at a point |ψ〉 with H itself,
TψH ∼= H . Thus, G can also be seen as a mapping from T H ×T H to the reals, and indeed
defines a Riemannian structure on the Hilbert space H . Similarly, � : H ×H → R defines
a symplectic form on H , and together with G it endows H with a Kählerian structure.
The interested readers can find more information on these geometric structures and their
implications for quantum mechanics in [15, 16]. In the present paper, we will be concerned
exclusively with the properties of the Riemannian metric G.

Our next aim is to carry over the Riemannian structure from S(H ) to the quantum
state space P(H ). Clearly, the Riemannian metric defined in (4) is not invariant under
the U(1) phase rotation (2). But the metric structure in the projective space of equivalence
classes cannot depend on these phases and should be defined accordingly. Here the bundle
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structure S(H )
π→ P(H ) comes in handy. A connection on a fibre bundle introduces the

notions of vertical (∈ Vψ) and horizontal vectors (∈ Hψ). Vertical vectors ‘point along’ the
fibre direction and are elements of the tangent spaces to the points in π−1([ψ]). So given
a curve (−ε, +ε) � t 
→ eiθ(t)|ψ〉, θ(0) = 0 along the fibre π−1([ψ]), the tangent vector
d
dt

(eiθ(t)|ψ〉)|t=0 = iθ̇ (0)|ψ〉 at the point |ψ〉 spans the vertical vector space Vψ
∼= iR. To

describe the connection in terms of a 1-form, we can naturally make use of the Hilbert-space
scalar product. Take as this natural connection 〈ψ | · 〉 : TψS(H ) → C. Then the horizontal
tangent space at a point |ψ〉 ∈ S(H ) is given by those vectors which are mapped to zero by
this connection:

Hψ ≡ {|ϕ〉 ∈ TψS(H )|〈ψ |ϕ〉 = 0}. (5)

This is precisely the orthogonal complement to |ψ〉 in S(H ), yielding the decomposition

TψS(H ) = Hψ ⊕ Vψ (6)

of tangent spaces of S(H ). An element |ϕH 〉 ∈ Hψ can now be written as

|ϕH 〉 = |ϕ〉 − 〈ψ |ϕ〉|ψ〉. (7)

This enables us to define a bilinear mapping

〈·|·〉[ψ] : T[ψ]P(H ) × T[ψ]P(H ) → C (8)

on the tangent spaces T[ψ]P(H ) of P(H ) as

〈P1|P2〉[ψ] ≡ 〈ϕH
1 |ϕH

2 〉. (9)

Here,
∣∣ϕH

1

〉
,
∣∣ϕH

2

〉
are vectors which are pushed forward to P1, P2 ∈ T[ψ]P(H ) by the tangent

projection π∗ : TψS(H ) → T[ψ]P(H ) that gives the tangent vectors to the projected curves
π(|ϕ(t)〉) in the base space P(H ). Equation (9) can also be written as

〈P1|P2〉[ψ] = 〈ϕ1|ϕ2〉 − 〈ϕ1|ψ〉〈ψ |ϕ2〉. (10)

This object is often referred to as the quantum geometric tensor [17]. By construction, it is
invariant under the U(1) transformation introduced above.

Taking the real part on both sides of equation (10), we can now define

g(P1, P2) ≡ �{〈P1|P2〉[ψ]} = G
(
ϕH

1 , ϕH
2

)
(11)

as a Riemannian metric on the projective Hilbert space. For explicit calculations, it proves
useful to rewrite g by employing a local section P(H ) → S(H ), [ψ] 
→ |ψ〉. This section
induces a push forward

T[ψ]P(H ) → TψS(H ), P 
→ | dψ(P )〉, (12)

which allows us to write |ϕ〉 = | dψ(P )〉. Finally, we obtain

g(P1, P2) = �{〈 dψ(P1)| dψ(P2)〉 − 〈 dψ(P1)|ψ〉〈ψ | dψ(P2)〉}. (13)

This Riemannian metric is usually called the Fubini–Study metric. Remarkably, one finds
that the distance corresponding to this metric is a distance in the information-geometric sense,
telling how ‘difficult’ it is to distinguish between certain states by means of ideal measurements
(see [18] for details). This metric is useful for studying quantum phase transitions at zero
temperature, where only pure quantum states need to be considered.
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3. Bures geometry on the quantum state space M

For the study of thermal phase transitions, we have to extend the fidelity metric to mixed
states, i.e. to the space of density operators. This formalism is mostly due to Uhlmann [19];
the presentation in this paper mainly follows [15].

Let M denote the set of density operators, which defines our second version of a quantum
state space. First note that P(H ) ⊂ M, since we have an isomorphism [ψ] 
→ |ψ〉〈ψ | for
pure states. For mixed states, one can identify a fibre bundle structure by observing that any
density operator can be written as ρ = WW †. The so-called purification W ∈ S(H HS) is an
element of

S(H HS) ≡ {W ∈ H HS|‖W‖HS = 1}, (14)

the Hilbert–Schmidt space of bounded operators W : H → H with the unit norm
‖W‖HS ≡ √〈W,W 〉HS that is derived from the scalar product

〈W1,W2〉HS ≡ tr W
†
1W2. (15)

Now, what is this construction good for, and where is the bundle? The purification of a
given density operator is not unique since, if W : H → H defines a purification, then WV

with V ∈ U(H ) purifies ρ as well. Here, U(H ) denotes the group of unitary operators
acting on the Hilbert space H . So instead of considering equivalence classes over just the
pure-state phases U(1), we now introduce a projection mapping π : S(H HS) → M by
W 
→ ρ = WW †.

There is still a slightly technical obstruction to obtaining a well-defined U(H ) bundle.
For general density operators, the ‘fibres’ π−1(ρ) need not be isomorphic to each other and
U(H ). This can be seen as follows. A general density matrix is by definition a positive
operator and can accordingly have null eigenvalues. Consequently, an operator W projected
to a given ρ is not necessarily of full rank. Moreover, if W 1 and W 2 are projected to ρ1 and ρ2,
respectively, they can differ in rank. Hence, in the presence of null eigenvalues of ρ, we can
expect a one-to-one correspondence for the elements of π−1(ρ) only to a subgroup of U(H ).
Therefore, in order to obtain a well-defined U(H ) bundle with all fibres isomorphic to U(H ),
we need to restrict the base space to strictly positive operators (only non-null eigenvalues),

M+ ≡ {ρ ∈ M|ρ > 0}. (16)

Now we need a subspace S(H̃ HS) ⊂ S(H HS) which projects to M+ under π . We find this
subspace to be

S(H̃ HS) ≡ {W ∈ S(H HS)| Ker(W) = 0}. (17)

Among others, we just excluded the projective Hilbert space from M+. But it turns out that,
once the metric tensor field we are interested in has been derived on M+, it can be extended
to equip the entire quantum state space M with a Riemannian metric [20].

To obtain the decomposition into horizontal tangent spaces HW and vertical tangent spaces
VW, TWS(H̃ HS) = HW ⊕ VW , we can again introduce a connection to the U(H ) bundle
S(H̃ HS)

π→ M+ using the scalar product on Hilbert–Schmidt space. Note that the tangent
spaces TWS(H HS) at a point W ∈ S(H HS) can be identified with subspaces of H HS due to
the Hilbert-space property of H HS. For the push forward of a vector X ∈ TWS(H̃ HS) we
obtain

π∗(X) = WX† + XW † ∈ TWW †M+. (18)

Since π eliminates all the vertical directions, a vector Y is vertical if

WY † + YW † = 0. (19)

5
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For horizontality of X, we thus require 〈X, Y 〉HS = 0 to hold for all vertical vectors Y ∈ VW .
This leads to the condition

X†W − WX† = 0. (20)

Note that X, being a tangent vector to the point W , can equivalently be written as d
dt

W(t)|t=0

for some curve W(t),W(0) = W . Then, following [21, 22], one can show that the ansatz
dW = GW , with G a hermitian matrix-valued 1-form, solves equation (20). For the 1-form
dρ, defined as the exterior derivative of the density matrix ρ = WW †, this translates into

dρ = ρG + Gρ. (21)

If we now define a metric tensor field on the tangent spaces of M+ by taking, again, the real
part of the scalar product and admitting only horizontal vectors as arguments, we obtain the
so-called Bures metric

g(P1, P2) ≡ �{〈
XH

1 , XH
2

〉
HS

} = 1
2 tr dρ ⊗ G(P1, P2), (22)

with P1 = π∗
(
XH

1

)
, P2 = π∗

(
XH

2

)
. Solving equation (21) for the matrix elements of G

and using a spectral resolution of the identity operator 1 = ∑
n |ψn〉〈ψn| in terms of the

eigenvectors of the density operator ρ, one obtains

g = 1

2

∑
n,m

〈ψn| dρ|ψm〉 ⊗ 〈ψm| dρ|ψn〉
pn + pm

(23)

for the metric tensor field, which was first found by Hübner [23]. pn are the eigenvalues of the
density operator ρ, which can be interpreted as statistical weights. In [24], by expanding dρ

in terms of the eigenstates of ρ, equation (23) is taken as a starting point for decomposing g
into two parts,

g = gcl + gnc, (24)

with

gcl ≡ 1

4

∑
n

1√
pn

dpn ⊗ 1√
pn

dpn (25)

and

gnc ≡ 1

2

∑
n,m

(pn − pm)2

pn + pm

〈ψn| dψm〉 ⊗ 〈 dψm|ψn〉. (26)

The so-called classical (cl) contribution gcl formally coincides with the Fisher–Rao metric
of classical information geometry [24]. gnc, in contrast, was dubbed the non-classical (nc)
contribution. In [24] it was also shown that the Bures metric indeed reduces to the Fubini–
Study metric for pure states.

As a last step, we need to argue that the Bures metric defined on M+ can be extended
to M: an explicit calculation for finite systems reveals that the subspaces corresponding
to zero-eigenvalues do not contribute to the trace operation which finally yields the distance
between two density operators. Hence, equations (25) and (26) can be continued to M without
modifications, and we have successfully constructed a fidelity metric on the quantum state
space M. The two expressions (25) and (26) form the starting point for our discussion of
phase transitions at finite temperature and their relation to the Riemannian structure of the
quantum state space.

6
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4. Isotropic LMG model

In this section we introduce the Lipkin–Meshkov–Glick (LMG) model in its spin formulation
and give some of its basic properties, following mainly the presentation in [25]. We then
specialize to the isotropic case which is exactly solvable with little effort even in the case of
finite systems and shortly report on its ground-state structure. Finally, the exact thermodynamic
solution is recalled.

The LMG model describes N spin-1/2 degrees of freedom residing on the vertices of a
graph. The spins interact through a ferromagnetic exchange coupling of infinite range, i.e. all
spin pairs interact with equal strength:

HLMG = − 1

N

∑
i<j

σ
†
iCσj − h

∑
i

σ z
i , (27)

where

σi = (
σx

i , σ
y

i , σ z
i

)t
, σ

†
i = (

σx
i , σ

y

i , σ z
i

)
. (28)

Here, i, j label the graph vertices and σi denotes the vector of Pauli matrices acting on the
Hilbert subspace Hi

∼= C
2 corresponding to each vertex. The Pauli-vector components satisfy

[σμ

i , σ ν
j ] = 2i δij εμνκσ

κ
j , where we used Greek indices to label spatial vector components.

The full Hilbert space is given by the tensor product

H =
N⊗

i=1

Hi
∼= (C2)⊗N . (29)

The coupling matrix C in (27) is given by C = diag(1, γ, 0), with anisotropy parameter γ . A
factor of 1/N is included in (27) to ensure a finite free energy per degree of freedom when
taking the thermodynamic limit. Moreover, an external magnetic field of strength h, pointing
in the z-direction, tries to align the spins along this direction.

The model dynamics can be formulated entirely in terms of the total spin

S = 1

2

N∑
i=1

σi . (30)

Its components obey the usual angular momentum commutation relations [Sμ, Sν] = i εμνκSκ ,
yielding [S2, Sμ] = 0 for all μ. Introducing spin-raising and -lowering operators S± =
(Sx ± iSy)/2, the Hamiltonian can be rewritten as

HLMG = −1 + γ

N

(
S2 − S2

z − N

2

)
− 2hSz − 1 − γ

2N

(
S2

+ + S2
−
)
. (31)

Since [S2,HLMG] = 0,S2 is a conserved quantity under the dynamics induced by HLMG.
Thus, the Hilbert space can be decomposed as

H ∼= (C2)⊗N ∼=
⊕

S

dS DS, (32)

where dS denote the multiplicities of irreducible and unitary SU(2)-representations DS of
dimension dimDS = 2S + 1. For convenience, we choose N even in the following,
obtaining S ∈ {0, . . . , N/2}. Moreover, the Hamiltonian is invariant under time reversal
(h 
→ −h, σ 
→ −σ). Therefore, all eigenvalues are at least twice degenerate (Kramers
degeneracy), En(h) = En′(−h), where n and n′ denote distinct sets of quantum numbers. Due
to this symmetry, we can restrict the discussion of the spectral properties of HLMG to the case

7
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h � 0. We now specialize to the isotropic model, and comment on the anisotropic case in
section 7. The Hamiltonian (31) reduces in the isotropic case γ = 1 to

Hiso
LMG = − 2

N

(
S2 − S2

z − N

2

)
− 2hSz. (33)

Since
[
Sz,Hiso

LMG

] = 0, now also Sz is an integral of motion. We denote by |SM〉 the
simultaneous eigenstates of S2 and Sz, where

S2|SM〉 = S(S + 1)|SM〉, Sz|SM〉 = M|SM〉. (34)

For every spin sector DS , the angular momentum eigenstates |SM〉,M = −S, . . . , +S, are
eigenstates of the Hamiltonian, and Hiso

LMG is invariant under rotations about the z-axis. Its
eigenvalues are given by

ESM = − 2

N

(
S(S + 1) − M2 − N

2

)
− 2hM. (35)

ESM attains its minimum in the maximum-spin sector (i.e. for quantum number S0 = N/2)
with the magnetic quantum number

M0 =
{
I(hN/2) for 0 � h < 1,

N/2 for h � 1,
(36)

where

I(x) =
{

�x� for x = �x� + δ, δ ∈ [0, 1/2),

�x� for x = �x� + δ, δ ∈ [1/2, 1)
(37)

is the rounding function. The value of the external field h therefore determines which of the
angular momentum states ∈ DN/2 is selected as the ground state. At certain values of h the
ground state switches from one M-value to another (see equation 36), and these points of
degeneracy are termed level crossings. In the thermodynamic limit N → ∞, the ground-
state energy per spin converges towards a continuous function of h [25], being infinitely
differentiable almost everywhere. Only at h = hc|T =0 ≡ ±1 its second derivative with respect
to h is discontinuous, signalling the above-mentioned phase transitions.

We now recall the exact thermodynamic solution of the LMG model, which is a special
case of a result by Pearce and Thompson [26] obtained for a large class of mean-field type
spin models in an external field. For the isotropic LMG model, the free energy per spin in the
thermodynamic limit N → ∞ is given by

f (β, h) ≡ − lim
N→∞

1

Nβ
ln tr exp

(−βHiso
LMG

) = 1

2
μ2

xy − β−1 ln
(
2 cosh

(
β

√
μ2

xy + h2
))

, (38)

where β denotes the inverse temperature. The relative magnetization in the z-direction,
μz = −∂f/∂h, is completely determined by the value of the external field h and the scalar-
order parameter μxy = μxy(β, h). The latter obeys the self-consistency equation

μ2
xy + h2 = (

tanh
(
β

√
μ2

xy + h2
))2

(39)

and has the interpretation of a relative in-plane magnetization with respect to the maximum
total spin N/2:

μ2
xy = lim

N→∞
2

N2

〈(∑
i

σ x
i

)2

+

(∑
i

σ
y

i

)2
〉

(40)

where 〈·〉 denotes a thermal-equilibrium average.
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Figure 1. Phase diagram of the isotropic LMG model plotted in the (T , h)-plane. The blue shaded
area marks the ordered phase with finite in-plane magnetization μxy �= 0, separated from the
paramagnetic phase μxy = 0 (shown in black) by a line of phase transitions making up the phase
boundary (dashed white).

The self-consistency equation (39) determines the phase diagram completely, see
figure 1. For fields with |h| < 1 and temperatures T below the critical temperature Tc(h), μxy

takes non-zero values and vanishes continuously when approaching the phase boundary by
either an increase in temperature or magnetic field. The phase boundary reached as μxy = 0
consists of all points (βc, hc) that obey hc = tanh(βchc) or

βc(hc) = h−1
c arctanh(hc), (41)

where βc = 1/Tc and hc denote critical values of inverse temperature and magnetic field.
In summary, the LMG model shows a ferromagnetically ordered phase separated from a
paramagnetic phase by a line of continuous phase transitions. All these exact thermodynamic
results for the infinite system coincide with results obtained from a mean-field treatment as
reported in [11] and [27].

5. Metric tensor field for thermal states

In this section we compute the metric tensor field on the submanifold of thermal states. A
thermal equilibrium state (or Gibbs state) of the isotropic LMG model is given by

ρ = 1

ZN(β, h)
exp

(−βHiso
LMG

)
, (42)

where

ZN(β, h) =
N/2∑
S=0

dS

+S∑
M=−S

〈SM| e−β(− 2
N

(S2−S2
z − N

2 )−2hSz)|SM〉 (43)
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is the canonical partition function. Here, the density operator inherits a dependence on β and
h from the Hamiltonian and the partition function.

For finite systems, equation (42) defines a parameterization of the submanifold G of
thermal states. Equivalently, we can take this as a trivial chart ρ(β, h) 
→ (β, h), defining
local coordinates on G. Vector fields (and, analogously, 1-forms or higher rank tensor fields)
can then be expressed with respect to the coordinate basis {∂β, ∂h}.

As a first step, we use the decomposition H ∼= ⊕
S dS DS of the Hilbert space of the

LMG model to cast the spectral representation of g (equations (24)–(26)) in a different form:
we solve equation (21), separately within every spin sector DS , for the matrix elements of G
with respect to the (2S + 1)-dimensional basis {|SM〉}. Plugging the result into equation (22)
and taking the trace, we arrive at the expressions

gcl = 1

4

∑
S

dS

∑
M

1√
pSM

dpSM ⊗ 1√
pSM

dpSM (44)

and

gnc = 1

2

∑
S

dS

∑
M,M ′

(pSM − pSM ′)2

pSM + pSM ′
〈SM| d|SM ′〉 ⊗ 〈SM| d|SM ′〉∗ = 0. (45)

Here, by

pSM = 1

ZN

exp(−βESM) (46)

we denote the statistical weights with energies ESM as given in (35). Since the eigenstates
of Hiso

LMG do not carry any explicit h-dependence (nor, of course, any β-dependence), the
non-classical contribution gnc vanishes by virtue of d|SM〉 = 0, and we are left with the
classical Fisher–Rao contribution (44). This is maybe not too surprising: since the operators
S2, Sz in the Hamiltonian of the isotropic LMG model are commuting, a (classical) probability
distribution can be assigned, and the corresponding information geometrical metric is known
to be the one of Fisher–Rao. A more detailed and more general discussion of Hamiltonians
consisting of commuting summands and the implications on the fidelity can be found in [28].

It is straightforward to compute the 1-forms dpSM in equation (44) with respect to the
dual coordinate basis dβ, dh, yielding

dpSM = ∂βpSM dβ + ∂hpSM dh, (47)

where the partial derivatives can be rewritten as

∂βpSM = pSM

(〈
Hiso

LMG

〉 − ESM

)
, (48a)

∂hpSM = −2βpSM(〈Sz〉 − M). (48b)

Expanding the metric tensor field with respect to the rank-two tensor basis dβ ⊗ dβ, dβ ⊗ dh,
etc, we obtain

gββ ≡ 1

4

∑
S

dS

∑
M

(∂βpSM)2

pSM

, (49a)

ghh ≡ 1

4

∑
S

dS

∑
M

(∂hpSM)2

pSM

, (49b)

ghβ ≡ 1

4

∑
S

dS

∑
M

∂βpSM∂hpSM

pSM

, (49c)

10
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and, furthermore, gβh = ghβ . Inserting (48a) and (48b) into the above equations, we find the
metric components to be given by equilibrium fluctuations and correlations,

gββ = 1

4

(〈
Hiso

LMG
2〉 − 〈

Hiso
LMG

〉2)
, (50a)

ghh = β2
(〈
S2

z

〉 − 〈Sz〉2
)
, (50b)

ghβ = −β

2

(〈
Hiso

LMGSz

〉 − 〈
Hiso

LMG

〉〈Sz〉
)
. (50c)

Analogous results have been derived in [24] for the case of a quantum Ising spin chain. Since
Hiso

LMG contains only commuting operators, the connected correlation functions on the right-
hand sides of (50a)–(50c) can, up to some pre-factors, be expressed as derivatives of the free
energy (38), yielding

gββ = −N

4
∂2
β(βf ), (51a)

ghh = −Nβ

4
∂2
hf, (51b)

ghβ = −Nβ

4
∂h∂βf. (51c)

Note that these expressions suggest a close relationship with Ruppeiner geometry [10], where
a Riemannian metric is defined in terms of derivatives of a suitable thermodynamic potential,
e.g. the free energy. In the case of a vanishing non-classical part gnc, the Bures metric for
thermal states and the Ruppeiner metric indeed differ just by a coordinate transformation.

The exact result for the free energy per spin (38) and the self-consistency condition (40) can
now be used to compute the metric per spin in the thermodynamic limit, g(∞) ≡ limN→∞ 1

N
g.

One would expect from equations (51a)–(51c) that, in this limit, the metric inherits a
nonanalytic behaviour from the nonanalyticity of the free energy f , but we will see in the
following that the situation is even a bit more involved.

5.1. Ordered phase

For the ordered phase with μxy �= 0 we can collect the metric components in the form of a
diagonal matrix,(

g
(∞)
ββ g

(∞)
βh

g
(∞)
hβ g

(∞)
hh

)
= 1

4

(
(μ2

xy+h2)(1+μ2
xy+h2)

1−β
[
1−(μ2

xy+h2)
] 0

0 β

)
. (52)

Equation (52) provides the components of a well-defined Riemannian metric, and we can now
interpret the metric components as indicators of how well thermal states with close-by values
of β and h can be distinguished. The graphs of g

(∞)
ββ and g

(∞)
hh in the (T , h)-plane are shown

in figure 2.
Instead of considering the metric components separately, one can combine them to

compute the Ricci scalar, a quantity characterizing the curvature of a manifold. We have

11
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Figure 2. Components g
(∞)
ββ and g

(∞)
hh of the metric in the thermodynamic limit as functions of

temperature T and external magnetic field h. When approaching the phase boundary, g(∞)
ββ increases,

suggesting enhanced distinguishability under variations of temperature. From the divergence of
g

(∞)
hh at T = 0 one can see that the Bures metric is not well defined for the ground state in the

thermodynamic limit (nor is it well defined for finite systems at T = 0).

computed the Ricci scalar by making use of the Maurer–Cartan [29] equations. Here, we skip
the details of this calculation and present only the final result in the thermodynamic limit:

R(∞) = 2

PQ

(
(∂βP )(∂hQ)

Q2
− ∂2

βP

Q
− ∂2

hQ

P

)
, (53)

where P = √
β/2 and Q = √

μxy∂βμxy/2. The graph of R(∞) is shown in figure 3. We
observe that R(∞) is negative in the entire ordered phase. In [24], it was conjectured that a
negative Ricci scalar should correspond to the ‘classical realm’ of a given system. Since the
Hamiltonian of the isotropic LMG model contains only mutually commuting terms, it may

12
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Figure 3. Ricci scalar R(∞) of the isotropic LMG model in the thermodynamic limit as
functions of temperature T and external magnetic field h. As for the metric components shown in
figure 2, R(∞) is well defined only for the ferromagnetically ordered phase, and the breakdown of
its existence can be interpreted as a signal of the phase transition. Note that, where defined, R(∞)

is negative, suggesting a classical-type behaviour of the system.

be regarded as classical, and the negative Ricci scalar we observe is in agreement with the
conjecture.

5.2. Paramagnetic phase

Surprisingly at first sight, the metric not only becomes singular at the phase boundary, but
changes its structure entirely from one phase to the other. Writing the rescaled metric tensor
in matrix form,
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g

(∞)
ββ g

(∞)
βh

g
(∞)
hβ g

(∞)
hh

)
= 1

4
(cosh (βh))−2

(
h2 hβ

hβ β2

)
, (54)

we find that in the disordered phase with μxy = 0, the matrix of the metric components has
vanishing determinant. This in turn implies that in the disordered phase the rank-two tensor
becomes degenerate and is not a proper Riemannian metric anymore. Since we started out
with a Riemannian metric in the finite-system case, the limit N → ∞ must have destroyed
this property.

One can understand the physical origin of this effect by considering expression (38) for the
free energy of the LMG model: for vanishing in-plane magnetization μxy = 0, the free energy
is identical to that of a spin system coupled to an external field h, but without any spin–spin
interaction whatsoever. Such a system is governed by the Zeeman–Hamiltonian H = −hSz,
and the corresponding thermal state is given by ρ = Z−1 exp(βhSz) with the partition function
Z = tr exp(βhSz). For this system, all (β, h) with βh = const. parametrize the same density
operator. The very same situation occurs also for the paramagnetic phase with μxy = 0 of
the LMG model in the thermodynamic limit, leading to the mentioned degeneracy of the
matrix of the metric components. As a consequence, thermal states of this phase should be
parametrized by only a single parameter, namely the reduced field h̄ ≡ βh. The corresponding
metric on such a one-dimensional manifold can be obtained by a computation similar to the
two-dimensional case reported above, yielding

g(∞) = (4 cosh h̄)−1 dh̄ ⊗ dh̄. (55)

6. Fubini–Study limit

We have mentioned at the end of section 3 that the Bures metric reduces to the Fubini–Study
metric when considering pure states. This should in principle allow us to define a Fubini–Study
metric on the ground-state manifold parametrized by a ground-state mapping h 
→ |ψGS〉.
However, we have observed in section 4 that the ground state of the isotropic LMG model
is the angular momentum eigenstate |N/2,M0(h)〉 where, according to equation (36), M0(h)

is selected by the rounding function I. As a consequence, no differentiable parametrization
of the ground state exists. Since this property naturally carries over to the respective chart
mapping, the Fubini–Study metric on the ground-state manifold of the isotropic LMG model
in the finite system is not well defined. Similar issues, related to ground-state level crossings
and their effect on the fidelity, are also discussed in [28].

In order to investigate the ground-state behaviour in the infinite system, we can
alternatively study the limit T → 0 of the Riemannian metric characterized by (52). The
component g

(∞)
ββ is found to vanish in this limit, in agreement with the fact that, according to

equation (50a), it is proportional to the specific heat. The component g
(∞)
hh , however, diverges

for T → 0 asymptotically as T −1. Hence the (rescaled) ground-state metric is not well defined
in this limit, although the ground-state energy becomes a continuous function of the external
field h in the thermodynamic limit.

7. Remarks on the anisotropic case

The problems we encountered in the previous section when trying to compute a metric on
the ground-state manifold of the isotropic LMG model can be traced back to the fact that
the Hamiltonian consists only of mutually commuting terms, which in turn allows for level
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crossings. For the anisotropic case, in contrast, we would expect a well-defined ground-
state metric. Exact results for the spectrum and eigenvalues exist also for the anisotropic
LMG model [30, 31]. In principle, these results would allow one to compute the metric on
the manifold of thermal states, but unfortunately they are expressed as rather complicated
multiple sums, with coefficients given as solutions of differential equations, which makes the
calculation quite difficult in practice. A more accessible result is given in [32, 33] for the
energy spectrum of this model in the thermodynamic limit but, as far as we can see, this might
not be sufficient for a computation of the fidelity metric.

Alternatively, one might try to compute the metric in mean-field approximation. Knowing
that, in the thermodynamic limit, the mean-field solution of the (isotropic or anisotropic) LMG
model coincides with the exact solution, one might hope to obtain the exact metric from a
mean-field calculation as well. Unfortunately this is not the case, nor are we aware of any
other approximation that retains enough of the original quantum state space structure in order
to deliver an accurate description of the underlying geometry.

In contrast to the isotropic LMG model where only the classical part (44) was found to
contribute to the metric, we expect the anisotropic case to have a non-zero non-classical
contribution (45). Furthermore, it will not anymore be possible to completely express
the metric in terms of derivatives of the free energy, and only then the characterization of
phase transitions by means of the fidelity metric would really go beyond a thermodynamic
description.

8. Conclusions

In this paper we have followed the idea that a suitable metric on the quantum state space can
be used to identify and characterize both classical and quantum phase transitions. We have
reviewed how such a fidelity metric is constructed, either on the space of pure states P(H ) or
on the space of state operators M. From the Bures metric, i.e. the fidelity metric on M, the
metric tensor field on the submanifold of thermal states has been derived. As an application
of these concepts, we studied the LMG model of spin-1/2 degrees of freedom sitting on the
vertices of a fully connected graph. The choice of this model was mainly motivated by the
fact that its thermodynamics is particularly simple to solve, and exact results are available for
the free energy per spin in the thermodynamic limit, both for the isotropic and the anisotropic
LMG model.

For the isotropic LMG model, we computed the metric tensor field on the submanifold of
thermal states, and we found that all metric components can be written as derivatives of the free
energy. This implies a close relation to Ruppeiner geometry, but this should be a peculiarity
of models with purely classical contributions to the metric. Another peculiar feature special to
the isotropic case is that on the ground-state manifold the metric is not well defined, neither by
direct construction from the finite system nor by a detour via thermal states and the subsequent
zero-temperature limit. This can be seen as a consequence of level crossings which occur in
this case, but are avoided in the anisotropic model.

As expected, we find that the phase transition of the isotropic LMG model occurring at
the transition line (41) in the (T , h)-plane is well captured by the metric components. In a
way, this signature is even more pronounced than for other models which had been studied
before: not only do the metric components show a singularity or discontinuity, but we also
find that, in the thermodynamic limit, the tensor field on the (T , h)-plane becomes degenerate
for the paramagnetic phase and therefore ceases to be a proper Riemannian metric.

It would be worthwhile to compare these results to the corresponding metric of the
anisotropic LMG model. Here, we expect the metric to be well defined on the ground-
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state manifold, and the non-classical part (45) of the metric to give a non-vanishing
contribution.
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[23] Hübner M 1992 Explicit computation of the Bures distance for density matrices Phys. Lett. A 163 239–42
[24] Zanardi P, Venuti L C and Giorda P 2007 Bures metric over thermal state manifolds and quantum criticality

Phys. Rev. A 76 062318
[25] Dusuel S and Vidal J 2005 Continuous unitary transformations and finite-size scaling exponents in the Lipkin–

Meshkov–Glick model Phys. Rev. B 71 224420
[26] Pearce P A and Thompson C J 1975 The anisotropic Heisenberg model in the long-range interaction limit

Commun. Math. Phys. 41 191–201
[27] Sollich P, Nishimori H, Coolen A C C and van der Sijs A J 2000 Exact solution of the infinite-range quantum

Mattis model J. Phys. Soc. Japan 69 3200–13

16

http://dx.doi.org/10.1103/PhysRevE.74.031123
http://www.arxiv.org/abs/0811.3127
http://dx.doi.org/10.1103/PhysRevLett.99.100603
http://dx.doi.org/10.1103/PhysRevA.75.032109
http://dx.doi.org/10.1103/PhysRevE.76.022101
http://dx.doi.org/10.1103/PhysRevA.79.032302
http://dx.doi.org/10.1103/PhysRevA.78.010301
http://dx.doi.org/10.1103/RevModPhys.67.605
http://dx.doi.org/10.1103/PhysRevE.79.031101
http://dx.doi.org/10.1103/PhysRevE.78.032103
http://dx.doi.org/10.1103/PhysRevA.78.062302
http://dx.doi.org/10.1103/PhysRevE.78.051126
http://dx.doi.org/10.1007/BF02193559
http://dx.doi.org/10.1016/0034-4877(86)90055-8
http://dx.doi.org/10.1016/0034-4877(96)83640-8
http://dx.doi.org/10.1007/BF01039313
http://dx.doi.org/10.1002/andp.19895010108
http://dx.doi.org/10.1016/0375-9601(92)91004-B
http://dx.doi.org/10.1103/PhysRevA.76.062318
http://dx.doi.org/10.1103/PhysRevB.71.224420
http://dx.doi.org/10.1007/BF01608757
http://dx.doi.org/10.1143/JPSJ.69.3200


J. Phys. A: Math. Theor. 42 (2009) 465304 D D Scherer et al
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